Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning
نویسندگان
چکیده
منابع مشابه
Dust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملOil spill detection using in Sentinel-1 satellite images based on Deep learning concepts
Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملPopulation Estimation Mining Using Satellite Imagery
Many countries around the world regularly collect census data. This census data provides statistical information regarding populations to in turn support decision making processes. However, traditional approaches to the collation of censes data are both expensive and time consuming. The analysis of high resolution satellite imagery provides a useful alternative to collecting census data which i...
متن کاملDetection of Flooding Events in Social Multimedia and Satellite Imagery using Deep Neural Networks
This paper presents the solution of the DFKI-team for the Multimedia Satellite Task at MediaEval 2017. In our approach, we strongly relied on deep neural networks. The results show that the fusion of visual and textual features extracted by deep networks can be effectively used to retrieve social multimedia reports which provide a directed evidence of flooding. Additionally, we extend existing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20236936